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Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i
kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplo-
mowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych
w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem
procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną
wersją elektroniczną.
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Streszczenie

Celem pracy jest konwersja Składnicy, polskiego banku drzew rozbioru składniowego, do
formatu wywodów rozszerzonej wersji CCG (Combinatory Categorial Grammar). CCG
jest gramatyką leksykalną, która umożliwia pozyskanie informacji składniowych ze zda-
nia za pomocą małej liczby uniwersalnych reguł oraz leksykonu kategorii dla poszczegól-
nych słów. Praca wprowadza rozszerzenia CCG mające na celu przystosowanie for-
malizmu do opisu polskiej składni (multizbiory argumentów i kategorie z dozwoloną
kompozycją) oraz reguły składniowe dla nich. Następnie przedstawiona jest odpowied-
nia wersja rachunku lambda oraz język reprezentacji treści, które razem tworzą warstwę
semantyczną formalizmu. Na koniec opisany jest proces konwersji Składnicy. Powstały
w efekcie leksykon jest głównym wynikiem pracy. Przedstawiona jest jego statystyczna
oraz opisowa ewaluacja.
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Abstract

The goal of this dissertation is conversion of Składnica, the Polish bank of syntax trees,
to a collection of derivations in an extended version of CCG (Combinatory Categorial
Grammar). CCG is a lexicalized grammar that allows for extracting syntactic infor-
mation from a sentence using a small number of universal rules and a lexicon of word
categories. The dissertation introduces extensions of CCG motivated by Polish syn-
tax (argument multisets and categories with permitted composition) and their syntactic
rules. We then introduce an appropriate version of lambda calculus and a content rep-
resentation language – they are used together as a semantic layer for the formalism.
Finally, we describe the process of converting Składnica to our grammar. The resulting
lexicon is the main outcome of this work. We present its quantitative and descriptive
evaluation.
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Chapter 1

Introduction

In this dissertation we attempt to adapt the Combinatory Categorial Grammar
(CCG) to the specifics of Polish language, and create a bank of sentence derivations
in the resulting formalism.

CCG is a simple but expressive grammar, proposed by Mark Steedman as an ex-
tension of Categorial Grammar first developed by Kazimierz Ajdukiewicz in 1935 (see
[Steedman11]). It relies on combinatory logic and is able to describe a wide range of
syntactic phenomena in the English language. It is a lexicalised formalism – the linguis-
tic information is stored not in the grammar rules, but in the categories of individual
words. The categories are then combined using a few general rules to produce the sen-
tence structure.

In 2003, Julia Hockenmaier built a bank of CCG derivations for English sentences,
using Penn Treebank (a manually constructed 1-million-word corpus of syntax analyses)
as source data [Hockenmaier03]. We try to construct a similar bank of derivations for
the Polish language, based on Polish bank of constituency trees called Składnica [Sklad].

Because Polish is a free-word-order language, the grammar must be adapted before
it can model at least simple sentence structure adequately. As a solution to a similar
problem in the Turkish language, a grammar called Multiset-CCG has been proposed
by Beryl Hoffman [Hoffman95]. We use his idea as a starting point for developing our
own formalism.

1.1. Results of this work

The dissertation provides the following:

• A grammar called PL-CCG, based on Combinatory Categorial Grammar and
its Multiset-CCG extension by Beryl Hoffman [Hoffman95]. The syntactic part
of the formalism is basically Multiset-CCG extended with composable categories
and feature vectors. PL-CCG is intended as an adequate target for conversion of
syntactic trees from the existing Polish treebank [Sklad].
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• A semantic representation layer of PL-CCG, which is a “multi-argument” ver-
sion of lambda calculus, combined with term assignment rules governing its use in
the derivations.

• A content representation layer built on the semantics, used to represent the
parsing results. We use the lambda-terms to build tree-like structures from which
the syntactic dependencies can be extracted. The process of extraction is non-
trivial because of the presence of adjuncts in derivations.

• A conversion algorithm that produces PL-CCG derivations from the constituency
trees used by the existing Polish treebank. The general structure of the algorithm is
inspired by Julia Hockenmaier’s work for English [Hockenmaier03], but the method
of conversion is adapted both to the new formalism and to the specifics of source
data.

• Finally, a treebank produced by the conversion, of which the most important
part is the lexicon – a dictionary of lexical categories for words encountered. We
evaluate the quality of the lexicon both quantitatively and descriptively.

While we attempt to adapt the overall formalism to the specifics of Polish language
(especially the syntactic part, as explained in chapter 4), the main motivation for that
comes from the source data, not linguistics. We do not aim to cover a wide range of
linguistic phenomena.

1.2. Outline of the dissertation

Chapter 2 describes the Combinatory Categorial Grammar. We present the syntactic
rules of the formalism, using a sequent system called Lambek calculus as a starting
point.

Chapter 3 introduces lambda calculus, and shows how it is used as a semantic layer of
CCG.

Chapter 4 provides the linguistic motivation for a more general version of the formal-
ism suitable for the Polish language, which we call PL-CCG.

Chapter 5 develops the semantics of PL-CCG. We adapt the simply-typed lambda
calculus defined in chapter 2 to our version of the formalism.

Chapter 6 defines content trees, which are used to represent syntactic dependencies in
the sentence. We show how to use the PL-CCG semantic layer to build the trees,
and how the dependencies are extracted from them.

Chapter 7 describes the PL-CCG treebank, a bank of derivations that is the subject
of this work. We begin with a summary of corresponding treebank for the English
language (as described in [Hockenmaier03]) and a description of Polish constituency
trees bank that is our source data. We then present the conversion algorithm used
to make the PL-CCG treebank.
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Chapter 8 attempts to evaluate the resulting treebank, or rather, its set of lexical
categories. First, a quantitative evaluation is performed: we define an appropri-
ate measure and test the lexicon using traditional machine learning methodology.
Afterwards, we examine the individual categories produced by our algorithm to
determine where the conversion is adequate and where it still needs improvement.

Chapter 9 briefly sums up the results of this work, and suggests some possibilities of
follow-up.
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Chapter 2

Combinatory Categorial
Grammar

Combinatory Categorial Grammar (CCG, [Steedman11]) is a lexicalized linguistic
formalism in which words are characterized by their categories, resembling function
types. The types are then combined, creating a partial syntactic derivation of sen-
tence fragments and ultimately the whole sentence. One of the useful properties of
CCG is the ability to combine sentence fragments not traditionally regarded as mean-
ingful constituents, which allows describing linguistic phenomena such as long-distance
dependencies and coordination.

Along with the derivation, a semantic structure is usually constructed. Usually
lambda-terms are attached to the constituents, and combined using rules taken from
combinator calculus, corresponding directly to the combinatory rules of the CCG gram-
mar.

We introduce the CCG grammar using a version of Lambek calculus [Lambek58].
Lambek’s formalism is a sequent calculus from which we can derive the necessary com-
binatory rules, giving them solid logical grounding.

This chapter covers the basic features of CCG as a starting point to develop our own
formalism. For a more thorough description of CCG itself, see [Steedman11].

2.1. Categories

We define a set of categories as follows:

• a finite set of atomic categories, such as S (sentence), NP (noun phrase), PP (prepo-
sitional phrase)

• functor (slash) categories: X/Y , X\Y where X, Y are categories.

Functor categories X/Y , X\Y describe a function type with argument Y and result
X. The slash denotes the direction: an argument with a slash (/) is expected on the
right side of the functor, a backslash (\) means the argument is expected on the left
side.
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A simple lexicon of categories (example from [Steedman11]) could be:

• Marcel : NP

• proved : (S\NP)/NP

• completeness : NP

In the example, we consider a noun phrase (such as Marcel) to be an atomic type. A
transitive verb such as proved is a function that expects a noun phrase to its right (the
object), then another one to its left (the subject), and finally returns a sentence.

2.2. Lambek calculus

Before we present the actual combinatory rules of CCG, we need to introduce the
more general Lambek calculus, on which we will base them. The formalism presented
here is a slightly simplified version of one described in [Lambek58] (we omit the concate-
nation operator).

Lambek calculus is a proof system operating on sequents of the form

X1, X2, . . . , Xn ` Y

where X1 . . . Xn and Y are categories. The intended reading is: a sequence of con-
stituents of types X1, X2, . . . , Xn can be used as a constituent of type Y . In our
example, to parse the sentence Marcel proved completeness, we will need to prove

NP, (S\NP)/NP, NP ` S

Proofs are constructed using the following rules. In each derivation rule, X and Y
are categories, while Γ, ∆, ∆′ are sequences of categories.

The Axiom rule says that a type can be reduced to itself.

(Axiom)
X ` X

The Cut rule allows us to use one sequent in another.

∆, X,∆′ ` Z Γ ` X
(Cut)

∆,Γ,∆′ ` Z

Finally, we have left- and right-side rules for both connectives.

Γ, Y ` X
(` /)

Γ ` X/Y
∆, X,∆ ` Z Γ ` Y

(/ `)
∆, X/Y,Γ,∆′ ` Z

Y,Γ ` X
(` \)

Γ ` X\Y
∆, X,∆ ` Z Γ ` Y

(\ `)
∆,Γ, X\Y,∆′ ` Z
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2.3. CCG combinatory rules

In the actual CCG grammar, we don’t use the Lambek calculus, but a number of
combinatory rules derived from it. Lambek calculus serves here as a foundation for a
simpler set of rules.

2.3.1. Application

The basic rule for combining the categories is the application rule (referred to as >
or <, depending on the direction):

(>) X/Y, Y ` X (<) Y, X\Y ` X

The application rule is a trivial result in the Lambek calculus. We present the
derivation for >; the one for < is analogous:

X ` X Y ` Y(` /)
X/Y, Y ` X

The Cut rule justifies using the application anywhere in the category sequence. In
a more traditional CCG notation, an example derivation for the sentence Marcel proved
completeness could be:

Marcel proved completeness

NP (S\NP)/NP NP
>

S\NP
<

S

What we have proved is basically the sequent:

NP, (S\NP)/NP, NP ` S

However, the process can also be viewed as parsing the sentence.

2.3.2. Composition

The second rule in the CCG formalism is the composition rule (> B or < B):

(> B) X/Y, Y/Z ` X/Z (< B) Y \Z, X\Y ` X\Z

The intuition is that of a function composition. This rule is certified by the following
proof in Lambek calculus:

X ` X Y ` Y(` /)
X/Y, Y ` X Z ` Z

(` /)
X/Y, Y/Z, Z ` X

(/ `)
X/Y, Y/Z ` X/Z

13



A corresponding proof exists for < B.
An example (adapted from [Steedman11]) shows how the composition rule can be

usede to capture coordination in language. Even though might in our grammar is a
modifier for verb phrases (S\NP), using the composition rule we have been able to use
it before we have a complete verb phrase (i.e. before the verb is applied to its object).

Marcel conjectured and might prove completeness

NP (S\NP)/NP (X\X)/X (S\NP)/(S\NP) (S\NP)/NP NP
>B

(S\NP)/NP

(S\NP)/NP
>

S\NP
<

S

For simplicity, we can assume the type of and is (X\X)/X, where X is (S\NP)/NP.
A more general solution would be to allow polymorphic categories (“(X\X)/X for
any X”), or even a special conjunction category with its own derivation rule, as in
[Hockenmaier03].

2.3.3. Type-raising

The third of the standard rules is the unary rule of type-raising. Like other rules, it
comes in two variations:

(> T ) X ` Y/(Y \X) (< T ) X ` Y \(Y/X)

The Lambek derivation (as usual, shown only for the right variation) is:

Y ` Y X ` X(\ `)
X, Y \X,` Y

(` /)
X ` Y/(Y \X)

The type-raising rules, as explained in [Steedman11], “turn arguments into functions
over functions-over-such-arguments.” An example of coordination that requires type-
raising to be parsed is (again from [Steedman11]):

Marcel proved and I disproved completeness

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP

S/NP
>

S
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2.4. Notation: slash associativity

In the subsequent chapters, we assume that slashes are left-associative, i.e. X/Y\Z . . .
should be understood as ((X/Y)\Z) . . .. The convention mirrors the usual right-associativity
of arrows in types and logic formulas (α→ β → γ ≡ α→ (β → γ)) and corresponds to
the notion of a multi-argument (curried) function.
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Chapter 3

CCG semantics

The derivation is central to parsing sentences in CCG, but the derivation tree is not
the main result of parsing. As a result of introducing the B and T rules, a sentence
can be parsed in a number of different, but intuively equivalent ways. The phenomenon,
called spurious ambiguity, is one of the reasons for introducing a semantic layer to CCG.

In addition to types, the constituents in a derivation can be supplied with a semantic
interpretation. The interpretations are a part of the lexical entries for the single words.
In the course of derivation, they are combined according to the derivation rules. We will
consider the semantics of the whole sentence to be the final result of parsing, and call
derivations equivalent if they produce to the same semantics.

The natural choice for such interpretation is lambda calculus. The reason for that
is the Curry-Howard isomorphism (see [Urzyczyn03]), a relationship between logical
formulas and types of lambda-terms. Our formalism can be viewed either as a logical
inference system, or equivalently as a type system for the underlying calculus.

In this chapter, we very briefly introduce lambda calculus, then extend the Lambek
calculus with lambda-terms. Using the modified calculus, we can present the resulting
“semantic” version of CCG rules. Finally, we show how the formalism can be used in a
derivation.

3.1. Lambda calculus

We define a lambda-term as one of the following:

• variable: x, y, z . . . ,

• abstraction: λx.M , where x is a variable and M is a lambda-term,

• application: M@N , where M and N are lambda-terms.

We assume that application is left-associative, that is, M@N@P . . . ≡ ((M@N)@P ) . . .
The lambda-terms are transformed using an operation called β-reduction, which al-

lows us to rewrite a pair of adjacent abstraction and application:

(λx.M)@N →β M [x := N ]

17



The notation means that (λx.M)@N can be rewritten as M with all instances of x
substituted with N . The operation can be performed on any subterm inside a term, as
long as it is of the form (λx.M)@N .

Before we can apply β-reduction, we sometimes have to rename the bound variables
(that is, variables inside their corresponding abstractions) in N so that the names don’t
conflict. The process of renaming bound variables is called α-conversion.

A more formal and thorough introduction to lambda calculus can be found in the
beginning chapters of [Urzyczyn03].

3.2. The type system

To use the lambda calculus in CCG grammar, we introduce a type system. We attach
a type (a CCG category) to each term we use, and to each subterm inside the term. The
notation M : X means that the category of term M is X.

The typing rules are as follows:

• all free instances of a variable in a term (that is, all instances of x that are not
inside an abstraction (λx.M) must have the same type,

• if M : X, and x : Y in M , then λx.M must be either of type X/Y , or X\Y ,

• conversely, if M is of type X/Y or X\Y , then in the term M@N we must have
N : Y and M@N : X.

An obvious consequence of these rules is that β-reduction preserves types:

Theorem 1. If T → T ′, and T : X, then T ′ : X.

Proof. Because the beta-reduction changes only a specific subterm, it’s enough to verify
the property for T = (λx.M)@N . According to the typing rules, it must be typed as
(λx.(M : X))@(N : Y ), with all free instances of x in M having type Y . Because we
substitute N , which has also type Y , the resulting T ′ = M [x := N ] is still a term of
type X.

In the system of simple types, β-reduction also has the important strong normaliza-
tion property.

Theorem 2 (Strong normalization). If M is a typed term, then every β-reduction se-
quence beginning with M terminates at the same unreducible term M ′.

Proof. See the proof in [Urzyczyn03] (chapter 2) for simply typed lambda calculus, which
can be easily extended to our category system with directional slashes.

The unreducible M ′ is called the normal form of a term. The strong normalization
property allows us to choose any reduction strategy we want, with the guarantee that
we will always arrive at the unique normal form of a given term.

18



3.3. Lambek calculus with lambda-terms

We extend Lambek calculus with lambda-terms. Each category in the sequent has
to be accompanied by a lambda-term.

The Axiom and Cut rules do not change the terms. However, we require that the M
we introduce in the Axiom rule is a suitable term for type X.

(Axiom)
M : X `M : X

∆,M : X,∆′ ` N : Z Γ `M : X
(Cut)

∆,Γ,∆′ ` N : Z

The slash rules allow us to introduce abstraction and application. The typing rules
again require of us that the terms will be well-typed, i.e. that y : Y in the term M in
rules ` / and ` \.

Γ, y : Y `M : X
(` /)

Γ ` λy.M : X/Y

∆,M@N : X,∆ ` P : Z Γ ` N : Y
(/ `)

∆,M : X/Y,Γ,∆′ ` P : Z

y : Y,Γ `M : X
(` \)

Γ ` λy.M : X\Y
∆,M@N : X,∆ ` P : Z Γ ` N : Y

(\ `)
∆,Γ,M : X\Y,∆′ ` P : Z

We also add the β rule to be able reduce the lambda-terms. By Theorem 1, the type
X stays the same.

(β)
M : X `M ′ : X if M →β M

′

3.4. CCG rules with semantics

We can now derive our application rule using lambda-terms.

M@N : X `M@N : X N : Y ` N : Y(` /)
M : X/Y, N : Y `M@N : X

A similar derivation can be built for composition:

f@(g@x) : X ` f@(g@x) : X g@x : Y ` g@x : Y
(` /)

f : X/Y, g@x : Y ` f@(g@x) : X x : Z ` x : Z
(` /)

f : X/Y, g : Y/Z, x : Z ` f@(g@x) : X
(/ `)

f : X/Y, g : Y/Z ` λx.f@(g@x) : X/Z

and for type-raising:

x@a : Y ` x@a : Y a : X ` a : X(\ `)
a : X, x : Y \X,` x@a : Y

(` /)
a : X ` λx.x@a : Y/(Y \X)

Finally, we add the β-reduction rule to our system.

(β) t : X ` t′ : X if t→β t
′
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3.4.1. Example derivations with semantics

Assuming we have some constants in our lambda-calculus to describe the entities
and relations, our first example (Marcel proved completeness) can now be extended with
simple semantic information:

Marcel proved completeness

m : NP λx .λy .p@x@y : (S\NP)/NP c : NP
>

λy .p@c@y : S\NP
<

p@c@m : S

Assigning the semantics can be more complicated than choosing the syntactic cate-
gory. We can show that on the example of and, for which we earlier proposed a class of
categories (X\X)/X (for any category X).

The obvious choice for a simple semantic representation of and is the term

λx.λy.a@x@y

(equivalently, just a). This solution seems to work in the simple case of noun phrases:

dogs and cats

d : NP λx .λy .a@x@y : (NP\NP)/NP c : NP
>

λy .a@c@y : NP\NP
<

a@c@d : NP

However, when we want to coordinate more complex categories, like verbal phrases
(S\NP) in a sentence like Marcel runs and jumps, we often aim to represent it as a
conjunction of two separate sentence representations (a@(j@m)@(r@m)). In that case,
we need to choose another semantic representation for the conjunct:

Marcel runs and jumps

m : NP λx .r@x : S\NP λx .λy .λz .a@(x@z )@(y@z ) : (S\NP)\(S\NP)/(S\NP) λx .j@x : S\NP
>

λy .λz .a@(j@z )@(y@z ) : (S\NP)\(S\NP)
<

λz .a@(j@z )@(r@z ) : S\NP
<

a@(j@m)@(r@m) : S

We assign the term λx.λy.λz.a@(x@z)@(y@z) to and, abstracting away the NP argu-
ment and replicating it inside the term. Using even more complex categories as conjuncts
(such as S\NP/NP) would require abstracting away additional arguments – as many as
the conjunct has – before returning an atomic result.
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3.4.2. A remark on terminology

In this document, we use the word semantics to mean any kind of information at-
tached to the CCG categories, not necessarily a semantic one in the linguistic sense.
While a popular use case indeed is to build a semantic representation of the sentence,
there are other possible applications of CCG semantics, such as extraction of the depen-
dency structure, described later in this work.
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Chapter 4

PL-CCG, a formalism for the
Polish language

In this chapter, we describe problems that make the original CCG formalism inad-
equate for the Polish language – rich morphology, free word order, sentence modifiers,
and certain phrases appearing at both adjunct and complement positions. We introduce
several enhancements to the formalism aiming to solve these problems.

The chapter ends with a summary of the new formalism, which we call PL-CCG. In
the next chapter, we extend PL-CCG with a variant of lambda calculus as semantics.

As we already said once in the introduction, while PL-CCG attempts to solve a
number of problems, it remains more data-oriented than linguistically motivated. The
main motivation is an adequate conversion of Polish treebank. Another formalism:
Logical Categorial Grammar, a generalization of CCG in the framework of intuitionistic
linear logic; is currently under development by Wojciech Jaworski [Jaworski11]. PL-CCG
can be considered a simplification, or a special case, of LCG.

4.1. Syntactic features

Because Polish is a highly inflected language, various constituents need to be anno-
tated with syntactic features in order to capture phenomena such as agreement. For
instance, in order to accurately parse sentences with noun phrases, we need to consider
their case, gender, number and person.

PL-CCG stores attributes in atomic categories, so that e.g. noun phrases have an
atomic category of the form NOcase,gender,number,person, for instance NOmian,zen,poj,3 (nom-
inative, feminine, singular, third person1). The feature values are extracted from the
source data – the conversion process is explained in chapter 7.

Unfortunately, the resulting categories are often too specific. In the current system,
the arguments of a functor include all syntactic features. This is obviously a simplifica-
tion, since e.g. the adjective doesn’t agree with the noun on person, the present tense of

1The full list of attributes can be found in Appendix A.
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a verb doesn’t agree with its subject on gender, and a verb doesn’t place any restrictions
on its noun phrase complements apart from the case.

To use the verb and subject example, the verb form biegnie (runs) can have either
one of 5 categories

• S|NOmian,mos,3

• S|NOmian,mzw,3

• S|NOmian,mnz,3

• S|NOmian,zen,3

• S|NOmian,nij,3,

one for each of the five genders we recognize (masculine personal, animal and inanimate;
feminine; and neuter).

To capture agreement accurately, it’s possible to include “wildcard” features in the
grammar, so that S|NOmian, ,3 is a proper category – we would then have to employ
pattern-matching in the derivation rules. Other, more fine-grained solutions include
introducing a notation for polymorphic features (see [Jaworski11]) or even devising an
inheritance hierarchy for the syntactic features, as proposed by Przepiórkowski for gen-
ders in [Przepiórkowski03].

In the current version of PL-CCG we don’t include any of these. The reason is
our data-orientedness mentioned before: wildcard features make sense linguistically, but
recovering them from the existing Polish treebank is not straightforward, and beyond
the scope of this work.

As a result, the syntactic features introduce no additional complexity to the current
derivation rules and most of the time we can safely skip them in our examples. In fact,
before chapter 7, introducing the actual treebank, the examples don’t use the categories
from the treebank at all. Chapter 7 and the subsequent chapter on evaluation mention
the real categories, but abbreviate them whenever possible.

4.2. Free word order

The Polish language has a relatively free word order. While the predominant sentence
structure is subject–verb–object (SVO), other orderings are also permitted. Because the
nouns are inflected by case, a sentence such as Marysia lubi Janka (Marysia(nom) likes
Janek(acc)) can be also written as:

• lubi Marysia Janka

• Janka lubi Marysia

• Janka Marysia lubi

• etc.

While the other permutations are less common, in all the sentences the predicate is an
instance of the same lexeme lubić. In the CCG formalism as described before, we would
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have to assign to it a number of different categories: S\NPacc/NPnom, S/NPnom/NPacc,
S/NPacc/NPnom etc. The problem gets even worse with verbs expecting two comple-
ments, such as dawać (to give).

The naive solution would be to relax the direction requirement: we could introduce a
third type of slash-category, X|Y, with rules for both forward and backward application
(and similar rules for composition and type-raising):

(>) X|Y, Y ` X (<) Y, X|Y ` X

This, however, still doesn’t solve the problem completely – the formalism is unable to
“forget” the argument order. For the word lubi we can use a type such as S|NPnom|NPacc

or S|NPacc|NPnom, but there is no single type that would enable parsing both Marysia
Janka lubi and Janka Marysia lubi – one argument always has to be realized before the
other.

4.3. Multiset-CCG

A way to relax the argument order has been proposed by Beryl Hoffman as a solu-
tion to a similar problem in the Turkish language [Hoffman95]. His formalism, called
Multiset-CCG, replaces single arguments with argument multisets: collections of argu-
ment categories that can be realized in any order. We adapt his solution for our project.

Let an argument be a term composed of a slash and category, where slash is one of
\, /, |. A functor category then consists of a result category and a multiset (unordered
sequence) of arguments:

• Marysia : NP, Janka : NP

• lubi : S{|NP, |NP}
• biegnie : S{|NP}

When there is only one argument, we will revert to the old notation: S{|NP} ≡ S|NP.
An important feature of the argument multisets is that they don’t join, e.g., S{...}{...}

doesn’t collapse into S{...}. Instead, the first multiset must be exhausted before we can
use the second. A simple example for why this is necessary can be a negative form of a
verb, such as biegnie: S{|NP}{/’nie’}. With this category, we want to be able to parse
a sentence like Marysia nie biegnie, but not nie Marysia biegnie. If we considered the
category to be equivalent to S{|NP, /’nie’}, the latter sentence would be permitted as
well.

The application rules in the new formalism are as follows:

(>) X{|Y } ∪ α, Y ` Xα (>) X{/Y } ∪ α, Y ` Xα

(<) Y, X{|Y } ∪ α ` Xα (>) Y, X{\Y } ∪ α ` Xα
where α is an argument multiset. We consider a “zero-argument” functor category to
be the same as a simple category (X{} ≡ X), so the application rules as stated above
are a generalization of CCG application.
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The multiset formalism is used by the main version of our lexicon, but we also
evaluate an alternate version with a ’no-sets’ flag (see section 8.1).

4.4. Sentence modifiers

Another problem involves sentence modifiers, or adjuncts – adverbs, prepositional
phrases, interjections and other optional constituents in a sentence. Because of the free
word order, most of them can appear in virtually any position in the sentence, that is,
between any arguments of the verb. The same modifier can also be used with verbs of
different valence. For instance szybko (quickly) is the modifier, and arguably the same
lexeme, in all of the following:

• Janek szybko je obiad (Janek eats dinner quickly)

• Janek je szybko obiad

• Janek je obiad szybko

• Janek szybko biegnie (Janek runs quickly)

• Janek biegnie szybko

Clearly szybko can’t be applied to the predicate (je, biegnie) alone, because in the
third sentence they are not next to each other – and even if it could, we would assign
it different categories depending on the verb: S{|NPnom, |NPacc}|S{|NPnom, |NPacc} or
(S|NPnom)|(S|NPnom).

A much more uniform solution is to modify the result or the whole sentence (S), by
assigning to the modifier the type S|S. Of course, if the rest of the sentence is not next
to the modifier, but around it, we need to use the composition rule.

4.5. Multiset composition

For multiset CCG, the following composition rule could be introduced:

(> B) X{|Z} ∪ α, Zβ ` Xα ∪ β (> B) X{/Z} ∪ α, Zβ ` Xα ∪ β

(< B) Zβ, X{|Z} ∪ α ` Xα ∪ β (< B) Zβ, X{\Z} ∪ α ` Xα ∪ β

where α, β are argument multisets.
An example derivation utilizing composition is:

Janek je szybko obiad

NPnom S{|NPnom, |NPacc} S|S NPacc
<B

S{|NPnom, |NPacc}
>

S|NPnom
<

S
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However, introducing unrestricted composition might have unintended consequences.
One is a greater number of derivations produced by the parser, increasing the computa-
tional cost. Another, more important one, is that composition can actually lead to in-
correct parses. Allowing every constituent to compose relaxes the ordering requirements
for the whole sentence, allowing every constituent to behave like a sentence modifier
described above.

We demonstrate the problem on a sentence with two coordinated phrases: Siedzę i
piszę list (I’m sitting and writing a letter). A CCG derivation for that sentence could
be:

Siedzę i piszę list

S S/S\S S|NP NP
< >

S/S S
>

S

With the same categories, and unrestricted composition, an incorrect Piszę i list
siedzę is also accepted:

Piszę i list siedzę

S|NP S/S\S NP S
<B

S/S|NP
>

S/S
>

S

For that reason, we restrict the composition feature to sentence modifiers only, by
introducing special composable categories with “double slashes”: X//Y , X\\Y , X||Y .
The categories must have a single immediate argument (i.e. X{||Y, /Z} is not a valid
category, but X||Y/Z is). The composition rule applies only to the composable cate-
gories. A similar idea has been implemented by Baldridge [Baldridge03] in the form of
multi-modal CCG.

4.6. Modifiers as arguments

Another problem with modifiers (not only the ones acting on a sentence level, but
also e.g. adjectives in noun phrases) is that their “modifier” status is not absolute.
There are some verbs that require a prepositional phrase with a specific preposition (idę
do domu – I’m going home) or an adverb (wyglądam dobrze – I look good), and others
for which the same prepositional phrases and adverbs are just modifiers (dobrze piszę
– I write well). Even though dobrze is in both cases intuitively the same form, it can
function either as an adjunct or a complement, and our grammar would assign different
categories to it depending on the context.

There are several ways the dilemma can be resolved:

27



• Always use the modifier category for certain phrases (do domu : S||S) and
require it as needed (idę : S|(S||S)). The problem with this approach is that we
lose significant information: there is no way to distinguish a prepositional phrase
from an adverb, not to mention different kinds of a prepositional phrase, if all have
the same type.

• Add optional arguments to the grammar, i.e. allow certain arguments to stay
unfulfilled (wyglądam : S{|AdvP}, biegnę : S{|AdvP?}). To incorporate as many
modifiers as we want in a sentence, we also would possibly need “inexhaustible”
arguments (S{|AdvP∗}). This idea requires a more complex grammar formalism
and underlying semantics, and is currently being explored by Wojciech Jaworski
in [Jaworski11].

• Translate the constituents as atomic (AdvP, PPdo), but include special deriva-
tion rules in the grammar that convert these categories to modifiers if necessary
(PP → S||S). Special rules have been added by Hockenmaier [Hockenmaier03]
to the English derivation bank as means of converting passive verbal phrases to
modifiers (as in the phrase workers exposed to it).

• Don’t use special categories for modifiers – consider all modifiers to be required
arguments of a verb in the grammar, and use atomic categories for them (do domu:
PPdo, dobrze: AdvP). This allows us to retain the information about constituent
type, but also requires us to include all that information in the verb type, which
creates many very specific categories for what should be a single lexical entry of a
verb.
As a refinement, this rule could also apply only to modifiers which legitimately
can be confused with verb complements, e.g. prepositional phrases but not inter-
jections.

• Keep the status quo – let dobrze have a category of AdvP in some cases, and
S||S in others, etc.

In our work, we are taking the last approach, but test the one before it as well –
in the main version of the corpus, we use distinct categories depending on whether a
word is a modifier, and as a baseline, we also evaluate a ’no-mods’ flag (see section 8.1).
While at the moment we do not implement the special rules approach, we consider it a
promising alternative.

4.7. PL-CCG rules

Figure 4.1 summarizes the rules of our formalism. It differs from standard CCG in
the following ways:

• The ordinary application rules have been superseded by multiset application (which,
of course, still includes the single argument case).

• The vertical slash (|) allows us to relax the directional requirement.
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(>) X{|Y, ...}, Y ` X{...} (>) X{/Y, ...}, Y ` X{...}

(<) Y, X{|Y, ...} ` X{...} (<) Y, X{\Y, ...} ` X{...}

(> B) X||Z, Z{...} ` X{...} (> B) X//Z, Z{...} ` X{...}

(< B) Z{...}, X||Z ` X{...} (< B) Z{...}, X\\Z ` X{...}

(||) X||Y ` X|Y (||) X//Y ` X/Y (||) X\\Y ` X\Y

Figure 4.1: PL-CCG rules.

• The composition rule is allowed for a special class of composable categories (X//Y).
We consider them a sub-class of regular categories (and allow them to be used in
application), so we include derivation rules for demoting them.

• We do not use type-raising.
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Chapter 5

PL-CCG semantics

In this chapter, we present the semantic part of the previously defined grammar.
As in ordinary CCG, the formalism is based on simply-typed lambda calculus. The
semantic layer will be later used as a starting point for a content representation layer,
but we hope that the system can provide a good foundation which could be extended to
accomodate other needs.

We will use a type system with ordered argument lists, because it simplifies both
describing and implementing the lambda calculus. However, we will also present a
mechanism that makes the full system behave in an order-oblivious manner.

A category in this chapter is thus either

• atomic, such as S, NP, or

• a functor, consisting of a result and an ordered argument list, in which arguments
are accompanied with one of |, /, \, for instance S〈/NP, \NP〉, or

• a composable functor, consisting of a result and a single argument: X//Y , X\\Y ,
X||Y , where X and Y are categories.

We will omit the directional slashes whenever possible. As before, we assume that a
functor with an empty argument list is an atomic category, that is, Y 〈〉 ≡ Y .

5.1. Multiset lambda calculus

The lambda-calculus part of the formalism has to be modified to include multiple
arguments. A term can be:

• a variable: x,

• an abstraction: λ〈x1, . . . , xn〉.M , where M is a term,

• an application: M@iN , where M , N are terms, and i is a positive integer; meaning
that M is applied to N as its i-th argument.

The β-reduction rule for the formalism is:

(λ〈x1, . . . , xi−1, xi, xi+1, . . . xn〉.M) @i N →β λ〈x1, . . . , xi−1, xi+1, . . . xn〉.M [xi := N ]
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with the usual requirement that the variables don’t conflict in the resulting term. In the
one-argument case, we drop the empty argument list from the result: λ〈〉.M ≡M .

5.1.1. The type system

As in CCG, assigning a category to a term is governed by the typing rules:

• all free instances of a variable in a given term must be of the same type,

• if x1 : Y1, x2 : Y2, . . . , xn : Yn in M , and M : X, then the term λ〈x1, . . . , xn〉.M
must have the type X〈Y1, . . . , Yn〉,

• in an applicationM@iN , M must have at least i arguments, and ifM : X〈Y1, . . . , Yn〉,
then N : Yi, and the whole term has type X〈Y1, . . . , Yi−1, Yi+1, . . . , Yn〉.

The results for the previous version of lambda calculus still apply:

Theorem 3. If T → T ′, and T : X, then T ′ : X.

Proof. A trivial modification of the proof for Theorem 1.

Theorem 4 (Strong normalization). If M is a typed term, then every β-reduction se-
quence beginning with M terminates at the same unreducible term M ′.

Proof. See again the second chapter of [Urzyczyn03]: the proof makes use of the fact
that two β-redexes in a term never partially overlap, which is still the case in our
formalism.

5.1.2. Reordering the arguments

Because the calculus defined above uses ordered argument lists, one more step is
necessary before we define the semantics for PL-CCG. To make the derivation rules
“ordering-oblivious”, we need to be able to reorder the arguments.

Let reorder(M : X) be the set of all results of argument reordering in term M of
category X. The process has to recursively consider all arguments and results. Nonethe-
less, it is a straightforward use of abstraction and application, so instead of including a
verbose definition, we will give an example:

reorder(term : X〈/Y, |Z〉) = {term : X〈/Y, |Z〉,
λ〈x, y〉.term@1y@1x : X〈|Z, /Y 〉}

5.2. PL-CCG rules with semantics

We can now present the semantic version of the PL-CCG derivation rules. We begin
with the application and composition rules (the slashes in arguments are omitted for
brevity).

(>) f : X〈Y1, . . . , |Yi, . . . , Yn〉, a : Yi ` f@ia : X〈Y1, . . . , Yi−1, Yi+1, . . . , Yn〉

32



(> B) f : X||Z, g : Z〈Y1, . . . , Yn〉 ` λ〈x1, . . . , xn〉.f@1(g@1x1@1 . . .@1xn) : X〈Y1, . . . , Yn〉

The rules are analogous for the other variations of connective and direction.
The demotion rule (also in three variations) converts a composable functor to a

regular one, without changing the underlying term.h

(||) t : X||Y ` t : X|Y

We also need a rule for β-reduction:

(β) t : X ` t′ : X if t→β t
′

Theorem 3 allows us to keep the same type for t′.
The final rule allows us to reorder the arguments in terms, so that equivalent types

can be used in place of each other.

(R) t : X ` t′ : X ′ if t′ : X ′ ∈ reorder(t : X)

Because of the reordering rule, the above system should be syntactically equivalent
to the one presented at the end of the previous chapter.

33





Chapter 6

Content trees

We have now fully defined an extension of the syntactic and semantic rules of CCG
to the multiset case. To use the system for actual parsing, we need one more element:
a content tree that will be the output of our parser. Because our aim is to extract
syntactic dependencies, the resulting structure will encode them, albeit in not entirely
straightforward way.

The representation will be of course built during the CCG derivation, using the
lambda calculus defined before. The partial results will consist of lambda-terms “scaf-
folding” supporting the tree nodes. However, we will show that the final result of parsing
will always be a pure content tree, with all the scaffolding gone. Because of that, we
can present the content representation layer in separation, and only later show how it is
added to the semantics.

We begin with a few examples explaining the rather complex shape of the system.
Afterwards, we formally define the content trees, and present the algorithm used to
extract dependencies from them. Finally, we reintroduce the content trees as part of the
lambda calculus defined in the previous chapter.

6.1. Motivation

The most obvious semantic representation is an application of verb to its arguments,
as in chapter 3, or equivalently, a tree. For Marcel proved completeness, it’s easy to see
how a term like p(c,m) could be transformed into dependencies (proved, completeness),
(proved, marcel). Labeled dependencies could also be easily encoded in such a format
by annotating the tree: p(subj = m, obj = c).

The modifiers are a complication, because there is no obvious way to attach them to
the tree using lambda-terms. For a sentence like A quick brown fox jumps over the lazy
dog, the structure we want is

jumps(fox(quick, brown), over(dog(lazy)))

or some variant of the above utilizing simple application (@).
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This, however, requires assigning lambda-terms like λ〈n〉.n@quick to the adjectives.
A system like that is hard to extend with second-order modifiers – modifiers acting on
other modifiers, such as adjectival adverbs. Because our adjective is not a simple node,
but a lambda-abstraction, there is no easy way to “attach” anything to it.

What we do instead is use the modifier as the parent of the node being modified. For
our sentence, the representation is:

jumps(quick(brown(fox)), over(lazy(dog)))

Naively extracting dependencies from such a tree leads to an obviously wrong result,
because e.g. quick is a special kind of node, and not the real head of its noun phrase.
We need to skip modifiers such as quick and brown when we look for the dependent of
jumps. The simplest way to achieve this is to mark the modifiers as special:

jumps

over

lazym

dog

quickm

brownm

fox

The rules are simple – when looking for a dependent, we go down from the head
skipping the modifier nodes. We alos reverse the dependencies originating from modifiers,
so that quick is the dependent of fox, not the other way around.

This design, however, still fails to account for the second-order modifiers. Consider
the phrase very big dog. The natural assignment of categories is

• dog : NP

• big : NP/NP

• very : (NP/NP)/(NP/NP)

and causes the term for very to be applied to the term for big, which corresponds to the
expected syntactic dependencies. However, translating that to the term representations
is hard to achieve. The functor category NP/NP might be a type of some lambda-
abstraction, and a term like very(λx. . . . ) does not tell us much about the resulting
dependencies.1

We therefore use the modifier as a parent of the whole phrase, which in the example
gives us verym(bigm(dog)). Of course, knowing that very and big are modifiers is not

1 One possible solution would be to introduce a special kind of application to our calculus, effectively
including a special case for modifiers in the reduction rules. The downside is that such a reduction
system is both harder to reason about and more domain-specific. We decided to keep to the well-known
core of lambda calculus, and build our representation as an additional layer on top of it.
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enough to extract the dependencies, because very has to modify big, not dog. We make
the system work by refining of the annotation idea. Each node is given a modifier order.
Order-1 modifiers act on ordinary (order-0) nodes, order-2 modifiers act on order-2
modifiers, etc.

The following tree shows the result for the phrase a very big dog. The article is
used as a head of the entire phrase, to show how we skip over both modifiers to find its
dependent.

a0

very2

big1

dog0

Finally, a modifier node can itself have dependents, as is the case with prepositional
phrases. In the sentence Marcel works on Mondays, the preposition on accepts a noun
phrase as its complement, then acts on a sentence (S\S/NP). Because of that, our
modifier nodes must have ordinary arguments and a special “modified” argument.

on1

works0

Marcel0

Mondays0

(mod)

Our trees also have to include the dependency labels, which we will add in the final
version presented in the next section.

6.2. Definition of a content tree

Having briefly explained the reasons for our design, we can now define it formally.
A content tree, or a content node, is either

• id0[arg1, . . . , argn] – a regular content node, or

• idi{arg0}[arg1, . . . , argn] – a modifier content node, where i > 0 is the modifier
order.
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id is a textual node identifier (e.g. orthographic form of a given word2), and each arg
is of the form d = node, where d is the dependency label, and node is again a content
node. Arguments arg1 . . . argn are called ordinary arguments, and arg0 in the modifier
node is a modifier argument.

In the above definitions, n can be 0, in which case the argument list [arg1, . . . , argn]
is omitted.

6.3. Dependency extraction algorithm

The method of extracting the dependencies has been specified very informally in the
section on motivation, but now we can give it in detail. First, we recursively define the
operation find(i, node) that looks for an order-i node, skipping over modifiers of higher
order:

find(i, node) =


id if node = id0[. . . ] and i = 0
node′ if node = idk{d = node′}[. . . ] and i = k
find(i, node′) if node = idk{d = node′}[. . . ] and i < k

We use find to define deps(node), which extracts all dependency relations originating
in a given node:

deps(node) =



{(id, d1, find(0, node1)),
...,
(id, dn, find(0, noden))} if node = id0[d

1 = node1, . . . , dn = noden]

the above and
(find(k − 1, node0), d0, id) if node = idk{d0 = node0}[. . . ]

We invoke deps for each node in the content tree. The result is a set of triples
(id1, deprel, id2) describing the dependency relations (id1 →deprel id

2). We also use
find(0, tree) on the full tree to recover the root of a phrase.

6.4. Content trees in lambda calculus

In the actual derivation, the content trees are a part of the semantics. We simply
use the content node as another kind of term, along with abstraction, application and
variables. A content node must be of an atomic type.

We allow other lambda terms as arguments of the content nodes, however, we also
require their types to be atomic, so that the whole structure can later be β-reduced to
a “pure” content tree. In fact, thanks to the typing rules the reduction is guaranteed:

2 In the implementation, apart from the orthographic form we store the word’s position in a sentence,
to disambiguate between repeated words in a sentence. For clarity, we omit that detail in this chapter.
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Theorem 5. If a term M has an atomic category (e.g. S), contains no free variables,
and is in normal form, then M is a well-formed content tree (i.e. contains no terms
other than content nodes).

Lemma. If a term Q has a functor category, contains no free variables, and is in normal
form, then it is an abstraction.

Proof. Obviously, Q cannot be a variable or a content tree. Let’s suppose it’s an ap-
plication: Q = Q′@iW . We know that Q is in normal form, has a functor type, no
free variables, and is not an abstraction (otherwise Q would not be in normal form).
By the same argument, Q must be also an application: Q′ = Q′′@jW

′, etc. We can
repeat the process ad infinitum, but Q is a term and as such contains a finite number
of applications. We conclude that our inital assumption was wrong and Q cannot be an
application.

Proof of the main theorem. Let T be the topmost subterm of M that is not a content
tree. Because it is topmost, it must be either the whole M , or one of subtree arguments.
Therefore, the type of T is atomic. If it’s not a content node, it must be either

• a variable: impossible, because it would be a free variable,

• an abstraction: impossible, because no abstraction has an atomic type,

• an application of an one-argument functor: T = Q@1R, Q : X/Y (or Q : X|Y ,
Q : X\Y ). Impossible, because by the Lemma Q is an abstraction, so M is not in
normal form.

Therefore, T cannot exist and M is a well-formed content tree.

6.5. Examples

We now show how all the elements described in this chapter (content trees, de-
pendency extraction algorithm, integration with lambda calculus) are used together to
describe natural language phrases. “Standard” semantic representations for a few parts
of speech are shown. While the actual representations we use in PL-CCG treebank are
determined from the data, this section should give a good idea of how they look for some
simple cases.

For the example sentence, Marcel works on Mondays, we annotate the words as
follows:

Marcel := Marcel0 : NP

works := λ〈x〉.works0[subj = x] : S\NP
on := λ〈x〉.λ〈y〉.on1{adjunct = y}[comp = x] : S\S/NP

Mondays := Mondays0 : NP
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Parsing the sentence and β-reducing the result returns the folowing:

on@1Mondays@1(works@1Marcel)→∗β
on1{adjunct = works[subj = Marcel]}[comp = Mondays] : S

The content tree described by the above term is shown in figure 6.1. The extracted
dependencies are (works, subj, Marcel), (works, adjunct, on), (on, comp, Mondays),
(ROOT, root, works).

Another example, for the phrase a very big dog, shows why modifier order annotations
are necessary. The terms are3:

a := a0 : NP/NP

very := λ〈a〉.λ〈n〉.very2{adv = a@1n} : (NP/NP)/(NP/NP)

big := λ〈x〉.big1{adj = x} : NP/NP

dog := a0 : NP

The parser then returns:

a@1((very@1big)@1dog)→∗β
a0[very2{adv = big1{adj = dog0}}] : NP

Figure 6.2 shows the resulting content tree, from which we extract the dependencies:
(a, art, dog), (big, adv, very), (dog, adj, big), (ROOT, root, a).

3 For simplicity, we assume that NP is at the same time the type of bare nouns and of noun phrases.
A more accurate lexicon, such as the one in [Hockenmaier03], could assign N to dog and NP/N to a. The
lambda-terms used would be the same in either case.
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on1

works0

Marcel0

subj

Mondays0

comp {adjunct}

Figure 6.1: Content tree for the sentence Marcel works on Mondays.

a0

very2

big1

dog0

{adj}

{adv}

art

Figure 6.2: Content tree for the noun phrase a very big dog.

41





Chapter 7

PL-CCG treebank

This chapter describes the process of building the PL-CCG treebank. First, an
analogous work for the English language and its treebank (Penn Treebank) is described.
The subsequent section describes the available data – a Polish constituency trees bank
called Składnica [Sklad]. We then detail the algorithms used to convert the constituency
trees to PL-CCG derivations.

7.1. CCGbank

The work presented here is heavily inspired by Julia Hockenmaier’s CCGbank project
[Hockenmaier03]. CCGbank is a bank of CCG derivations converted from Penn Tree-
bank, a manually annotated corpus of English syntax trees. This is an example sentence
in Penn Treebank:

(S
(NP-SBJ (NNP Mr.) (NNP Vinken))
(VP
(VBZ is)
(NP-PRD
(NP (NN chairman))
(PP
(IN of)
(NP
(NP (NNP Elsevier) (NNP N.V.))
(, ,)
(NP (DT the) (NNP Dutch) (VBG publishing) (NN group))))))

(. .))

The parse tree is shown in the original bracket notation. The structure includes the
following node labels:

• part-of-speech tags for single words, such as proper noun (NNP) or present tense
verb (VBZ)
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• chunk tags describing other constituents: noun phrase (NP), verb phrase (VP),
sentence (S)

• relation tags that clarify the role of a constituent, such as subject (-SBJ) or pred-
icate (-PRD).

For a more detailed description of Penn Treebank, see chapter 3 of [Hockenmaier03].
Hockenmaier’s algorithm produces the following output for the tree:

{S[dcl]
{S[dcl]
{NP {N {N/N Mr.} {N Vinken}}}
{S[dcl]\NP
{(S[dcl]\NP)/NP is}
{NP
{NP {N chairman}}
{NP\NP
{(NP\NP)/NP of}
{NP
{NP
{N {N/N Elsevier} {N N.V.}}}
{NP[conj]
{, ,}
{NP
{NP[nb]/N the}
{N
{N/N Dutch}
{N
{N/N publishing}
{N group}}}}}}}}}}

{. .}}

The output describes a CCG derivation. CCGbank uses special derivation rules
for a number of cases, including getting rid of sentence-ending punctuation (S . → S),
special conjunction rules (, NP → NPconj, NP NPconj → NP) and auto-promotion of N
(N→ NP). The rest of the derivation shown here follows the application rule.

The CCGbank utilizes only a small number of atomic categories: noun (N), noun
phrase (NP), prepositional phrase (PP, not shown here), sentence (S) and categories for
punctuation. Some of the categories include a special feature further describing its type,
such as declarative sentence (Sdcl) or noun-bare noun phrases (NPnb). The features are
matched during the derivation with no feature acting as wildcard, so that Sdcl and S
match, but Sdcl and Swh (a sentence with who-question) don’t.

Figure 7.1 shows the same derivation in a graphical form, simplified by collapsing
some of the noun phrases and omitting the ending full stop.

The conversion process is fully automatic. While there are some special cases, the
general algorithm is simple:
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Sdcl (<)

Sdcl\NP (>)

NP (<)

NP\NP (>)

NP

Elsevier N.V., the Dutch publishing group

NP\NP/NP

of

NP

chairman

Sdcl\NP/NP

is

NP

Mr. Vinken

Figure 7.1: Simplified derivation for the example sentence in CCGbank.

• for each subtree, find its syntactic head,

• classify the remaining children nodes as complements or adjuncts,

• binarize the tree, starting from the nodes on the right side of the head, then nodes
on the left,

• convert the resulting binary tree into a derivation using application (for comple-
ments) and composition (for adjuncts).

It’s worth noting that Penn Treebank contains neither the phrase head, nor comple-
ment vs. adjunct information. Both have to be determined heuristically.

7.2. Polish treebank (Składnica)

Składnica, the Polish treebank [Sklad], is a corpus of grammatical derivations for
(as of May 2012) 8227 Polish sentences. The sentences were first parsed by Świgra, a
parser built by Marcin Woliński [Wolinski04] based on a definite clause grammar (DCG)
described by Marek Świdziński [Swidzinski92]. The correct parse tree for each sentence
was then chosen by human annotators.

The parse trees are more detailed than in Penn Treebank: they include information
about head of each phrase, and distinguish between adjuncts and complements of a
predicate.

Figure 7.2 shows an example tree for the sentence Omawiana książka jeszcze raz to
potwierdza. (The discussed book confirms that again).

To summarize the labels in the tree:

• The top level is an utterance (wypowiedzenie) and contains a sentence (zdanie)
and the ending full stop (znakkonca).
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wypowiedzenie

znakkonca

.

zdanie

ff

fwe

formaczas

potwierdza

fw

fno

zaimrzecz

to

fl

fno

fno

raz

modpart

jeszcze

fw

fno

fno

formarzecz

książka

fpt

formaprzym

Omawiana

Figure 7.2: Simplified parse tree for the sentence Omawiana książka jeszcze raz to
potwierdza in Składnica.

• A sentence consists of a finite phrase (ff) containing the verb; accompanied by up
to three required phrases (fw) acting as the subject and complements, and several
free phrases (fl) – typically sentence adjuncts, but also e.g. interjections.

• After specifying their function in a sentence, constituents are in turn categorized
as verbal phrase (fwe), nominal phrase (fno) and adjectival phrase (fpt under the
nominal phrase).

• On a lower level, the constituents are typically single-word, and roughly correspond
to parts of speech: adjectival and noun forms (formaprzym, formarzecz), particle
modifier (jeszcze), nominal pronoun (zaimrzecz), verb form (formaczas).

• The lowest level consists of terminal symbols, containing the actual orthographic
forms.

The tree includes information about the head of every node (here in bold face).
Apart from the labels, the nodes also contain several syntactic features. The full

tree, with all features visible, is shown in figure 7.3.
The features relevant to our conversion algorithm described later include:

• morphological features: case (przypadek), number (liczba), gender (rodzaj),
person (osoba),

• the preposition in prepositional phrases (przyim, not shown here),

• type of required phrase (tfw), similar to the relation tag in Penn Treebank: subject
(subj), accusative noun phrase complement (np(bier)), various types of preposi-
tional phrases (prepnp, prepadjp – not shown here), etc.
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Figure 7.3: Full parse tree for the sentence Omawiana książka jeszcze raz to potwierdza
in Składnica.
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A list of all symbols in Składnica (including categories, features, and feature values)
is included as Appendix A.

7.3. The conversion algorithm

In this section, we describe the process of converting parse trees from Składnica to
CCG derivations.

We start by describing how the nodes are classified as head, arguments and modifiers.
We then describe the process of assigning categories to the nodes and ultimately to the
single words. Finally, we briefly describe the dependency labeling and assignment of the
semantic information.

7.3.1. Classifying the node elements

The first step of the algorithm is to classify every element (i.e. child) of a given node
as a head, argument, or modifier.

• A head is the element that will be applied to all the arguments in the derivation.
Exactly one child of every node is marked as head.

• A modifier is an “optional” element that will be either applied to the partial result,
or composed with it. Its existence does not influence any other categories – an
essentially the same derivation can be constructed without it.

• All other elements are considered arguments.

The head element

In most cases, the information about head element is taken directly from the corpus.
Currently, there are two exceptions to that rule:

• Some constituents, such as sentences of the form Gdyby ..., to ... don’t contain
information about the head element. We use the first child node as head.

• Verbs with conditional auxiliary suffixes (condaglt), such as zrobiłby, are stored
in the corpus as root and auxiliary parts (zrobił+by), with the auxiliary marked as
head. To maintain consistency with other constructions with the same auxiliaries,
(on by to zrobił), we instead use the verb root as head, and the auxiliaries as
arguments.

Modifiers

We classify the following nodes as modifiers:

• subtrees explicitly specified as modifiers in the corpus: modpart (particle modifier),
modjaki (jaki-type modifier), fl (free phrase),
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Phrase Node type Category Features
nominal fno NO case, gender, number, person
adjectival fpt PT case, gender, number
prepositional-nominal fpm PM preposition, case
prepositional-adjectival fpmpt PMPT preposition, case
adverbial fps PS
verbal fwe WE
sentential fzd SS type
sentence zdanie, S

wypowiedzenie
free fl L

Table 7.1: Atomic categories used in the PL-CCG treebank. The L category is used for
the multi-word free phrases in the version without modifiers (see section 8.1).

• adjectives (fpt), adverbs (fps) and prepositional phrases (fpm, fpmpt), except in
a required phrase (fw) in a sentence, or as a part of another node of the same kind
(which happens in coordinate phrases),

• punctuation at the beginning (pauza – initial dash in dialogue lines) and at the
end (znakkonca, e.g. ’.’, ’?’, ’ !’) of the sentence, allowing us to effectively ig-
nore it and simplify the other categories. A similar conversion has been done in
[Hockenmaier03] by introducing special derivation rules (S . → S).

7.3.2. Building the derivation

We then select the categories for elements, at the same time building the derivation.
The algorithm recursively considers every node in the graph, starting from the top.
Apart from the head–modifier–argument classification described above, we are given a
required result for the given part of a derivation, that is, the category of the node we are
currently processing. The top-level required result is S.

We first describe how the arguments are processed, and how the algorithm constructs
a derivation tree out of head and argument nodes. We then explain how the modifiers
fit in the process. Finally, we describe the exceptions made to allow for free word order.

The argument nodes

Processing the argument nodes is relatively simple: they receive the atomic cate-
gories. The categories are determined given the information in the node type.

Compared to CCGBank, which in essence uses only three categories (S, NP, PP),
the category set in our work is much more complex. We also extract syntactic features
and include them in the categories. Table 7.1 lists all the atomic categories.

After we assign an atomic category to a given node, we can recursively process the
nodes inside it (with that category as the required result).
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S (<)

S\A (<)

S\A\B (>)

D

. . .

S\A\B/D (>)

C

. . .

S\A\B/D/C

. . .

B

. . .

A

. . .

Figure 7.4: Example derivation without modifiers.

The basic derivation

When all the arguments have been processed, we can proceed to build a derivation.
We will ignore the modifier nodes for now.

We will trace the process for an example tree with nodes A, B, X, C, Y , D, where
A,B,C,D are the categories of arguments, Y is determined to be a modifier, and X is
the head node (X and Y have as of yet undetermined categories). The category for the
whole node is S.

S

D

. . .

Ymod

. . .

C

. . .

Xroot

. . .

B

. . .

A

. . .

We assume that the head is applied first to all arguments to the right, then to all
arguments to the left. The resulting category mirrors that derivation.

In our example, the order of applications is C, D, B, A, and the category of the head
node is S\A\B/D/C. Figure 7.4 shows the derivation.

After we determine the category of the head node, we can also recursively process it
with that category as the given result.

Adding the modifiers

The modifiers can now be inserted into the derivation, with a category that allows
them to modify the partial application result. In our example, the modifier Y receives
category (S\A\B/D)\(S\A\B/D), because it is applied after we have used the argument
C (see figure 7.5).

50



S (<)

S\A (<)

S\A\B (>)

D

. . .

S\A\B/D (<)

(S\A\B/D)\(S\A\B/D)

. . .

S\A\B/D (>)

C

. . .

S\A\B/D/C

. . .

B

. . .

A

. . .

Figure 7.5: Example derivation with the modifier included.

As before, we can recursively process the modifiers after we have determined their
category.

Word order relaxation

Some constituents are classified by our process and unordered and transformed using
a slightly different process:

• the head node’s category is an argument multiset with undirected arguments (in
our case, S{|A, |B, |D, |C}),
• the sentence modifiers modify the result and not the partial result. Sentence modi-

fiers receive composable, undirected categories (in our case, S||S) and the resulting
derivation utilizes composition if necessary.

Figure 7.6 shows a version of our example derivation for unordered nodes.
The word order relaxation applies to sentences (zdanie), sentential phrases (fzd),

and verbal phrases (fwe); with the exception of phrases that don’t follow the usual
“finitive phrase + required phrase + free phrases” structure (that is, phrases containing
none of ff, fw, fl). These include verbal phrases of the form “nie+verb” and coordinate
clauses – in effect, in a coordinate clause the constituent clauses are order-relaxed, but
the top-level zdanie+’i’+zdanie is not.

We also consider some non-sentence modifiers undirected, converting their slashes
to undirected ones (|). These are adjectives, adverbs and prepositional phrases (fpt,
fps, fpm, fpmpt) classified as modifiers. We only lose the directionality requirement,
not the order requirement (e.g. prepositions in noun phrases are NO|NO/NO, not
NO{|NO, /NO}).
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S (<)

S|A (<)

S{|A, |B} (>)

D

. . .

S{|A, |B, |D} (< B)

S||S

. . .

S{|A, |B, |D} (>)

C

. . .

S{|A, |B, |D, |C}

. . .

B

. . .

A

. . .

Figure 7.6: Example unordered derivation.

7.3.3. Dependency extraction

We can extract syntantic dependencies from the data gathered already. Basically, for
every head-argument application, and every modifier-head application (or composition)
we connect the two constituents with an unlabeled dependency relation. Connecting the
constituents in turns means connecting their root terminals, i.e. the terminal elements
determined by repeatedly selecting the head of a subtree.

After that, we need to label the relations. Unfortunately the source data in most
cases does not include dependency annotation, which makes the labelling hard.1 We use
only a limited set of dependency relations:

• subj, for subjects of a predicate (marked in the treebank by the required phrase
type (tfw) attribute),

• punct, for the punctuation beginning and ending the sentence (pauza, znakkonca),

• aux, for all auxiliary verbs and particles (nie, się, verb suffixes such as -by) – all
nodes of types condaglt, posiłk and partykuła, and all arguments in a verb form
(formaczas),

• adjunct, for all other modifiers,

• comp, for all other non-modifiers,

• root, for the sentence root (that is, the main predicate X always receives a depen-
dency relation (ROOT, root, X) from the parser).

1Such labelling has been done before – [Wroblewska11] describes the Polish Dependency Bank, which
is a conversion of trees from Składnica to labeled dependencies. We decided to use the constituent,
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The set of labels serves mostly the process of evaluation, and should be regarded
more as a proof of concept than any linguistically meaningful construction.

7.3.4. Constructing the semantic representation

We now have all the components necessary to assign the lambda-terms for the words
– word categories, the derivation, and dependency labels.

The simplest case is the atomic category. For these, we just assign a content node
with no arguments. For instance, the proper name Marysia : NO receives the term
marysia0.

If the word has a functor category, we can identify in the derivation a chain of
applications that ends in one of two ways:

• the word is finally applied to some other constituent – it’s a modifier,

• the word is finally used an argument, or becomes the final S of a sentence – it’s an
ordinary node.

We can now retrace the chain of applications and build the appropriate lambda term
that uses the dependency labels. For the ordinary nodes, the resulting term will be

λ〈. . .〉 . . . λ〈. . .〉.id0[d1 = x1, . . . , dn = xn]

where id is the word identifier, d1 . . . dn are dependency relations, and the abstractions
use the arguments x1 . . . xn. For instance, the verb form lubi : S{|NO, |NO} (likes) could
receive a term

λ〈x, y〉.lubi0[subj = x, comp = y]

For modifiers, the last argument is the modified one, i.e. the one on the special 0-th
position in the content node. A simple case of a modifier is an adjective like wielki :
NO|NO, which receives a term

λ〈n〉.wielki1{adj = n}

A modifier can be applied to several ordinary arguments before the last, modified
one. This is the case which prepositions, which first require a nominal phrase, and only
then modify the sentence. For instance, the preposition do : S||S/NO receives a term

λ〈n〉.λ〈s〉.do1{adjunct = s}[comp = n]

The last special case concerns higher-order modifiers. As we said in section 6.1, if our
last argument is a modifier (i.e. we’re modifying a modifier), we want the entire phrase

not the dependency version of the treebank, because the constituent format retains more structure and
allows for easier classification of subtrees as ordered or unordered.

Unfortunately, at the time of writing this the dependency extraction algorithm mentioned in
[Wroblewska11] has not yet been released. In the future, it might be possible to incorporate Wróblewska’s
dependency classification method in the PL-CCG building process.
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(including that modifier’s argument) to be inside our term, so we need to abstract away
additional arguments and use them again inside the term.

An example higher order modifier could be bardzo : (NO|NO)|(NO|NO) (very), an
adjective-modifying adverb. The term our algorithm assigns to bardzo is

λ〈a〉.λ〈n〉.bardzo2{a@1n}

The pattern of abstracting away additional arguments, then using them inside the
term, is the same one we used for semantics of conjunction back in the beginning (sec-
tion 3.4.1).

7.3.5. An example output of the algorithm

Figure 7.7 shows the derivation our algorithm produces for the sentence Omawiana
książka jeszcze raz to potwierdza, quoted earlier in section 7.2.

Along with categories, the derivation builds a content representation. As shown
in figure 7.8, lambda-terms attached to the words are combined, ultimately resulting
in a complete content tree in the top-level node – the parsing result. To extract the
dependency structure, we use the extraction algorithm (section 6.3) on that content
tree.

The extracted dependencies are:

(ROOT, root, potwierdza(5)),
(potwierdza(5), subj, książka(1)),
(potwierdza(5), adjunct, raz (3)),
(potwierdza(5), comp, to(4)),
(potwierdza(5), punct, .(6)),
(książka(1), adjunct, Omawiana(0)),
(raz (3), adjunct, jeszcze(2)).

The numbers in the dependency relations ((5), etc.) are the word positions in the
sentence.
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S (<)

S\S

.

S (<)

S|NOmian,zen,poj,3 (> B)

S|NOmian,zen,poj,3 (<)

S{|NOmian,zen,poj,3, |NObier,nij,poj,3}

potwierdza

NObier,nij,poj,3

to

S||S (>)

S||S

raz

S||S/(S||S)

jeszcze

NOmian,zen,poj,3 (>)

NOmian,zen,poj,3

książka

NOmian,zen,poj,3|NOmian,zen,poj,3

Omawiana

Figure 7.7: PL-CCG derivation tree for the sentence Omawiana książka jeszcze raz to
potwierdza.

.1{jeszcze2{adjunct = raz1{adjunct = potwierdza0
[subj = Omawiana1{adjunct = ksiazka0}, comp = to0]}}}

(<)

λ〈x〉.1{punct = x}jeszcze2{adjunct = raz1{adjunct = potwierdza0
[subj = Omawiana1{adjunct = ksiazka0}, comp = to0]}}

(<)

λ〈x〉.jeszcze2{adjunct = raz1{adjunct = potwierdza0
[subj = x, comp = to0]}}

(> B)

λ〈x〉.potwierdza0
[subj = x, comp = to0]

(<)

λ〈x, y〉.potwierdza0
[subj = x, comp = y]

to0

λ〈x〉.jeszcze2
{adjunct = raz1{adjunct = x}}

(>)

λ〈x〉.raz1{adjunct = x}λ〈y〉.λ〈x〉.jeszcze2
{adjunct = y@1x}

Omawiana1
{adjunct = ksiazka0}

(>)

ksiazka0λ〈x〉.Omawiana1
{adjunct = x}

Figure 7.8: Lambda-terms in the example derivation.
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Chapter 8

Evaluation

In this chapter, we attempt to evaluate the main result of the previously described
algorithm, that is, the lexicon of word categories.

We frame the evaluation as a machine learning problem of training a parser. The
derivation trees is divided into training and testing sets, and the lexicon extracted from
the training set is used to parse the testing set. We use the dependencies produced
by the parser to measure its accuracy. Unfortunately, the data sparseness causes the
parser to succeed on only a small percentage of sentences (7% in the best case), but the
obtained results still allow us to compare different approaches to conversion.

The chapter ends with a discussion of the lexicon. Examining the categories produced
by the algorithm allows us to identify the areas where the algorithm was adequate to
the task, and ones where a better conversion method is needed.

8.1. Versions of the lexicon

We decided to evaluate two conversion flags, creating four versions of the lexicon.
The flags are

• “no-sets”: no argument multisets, arguments in every category are ordered,

• “no-mods”: no modifiers, every constituent is an argument.

The versions of the “normal” (multisets and modifiers present), “no-sets”, “no-
mods”, and “no-mods+no-sets”.

8.2. Quantitative evaluation

We now present the quantitative evaluation of the lexicon. We begin with a descrip-
tion of the parsing algorithm and methodology used, then show the numerical results
and attempt to interpret them.
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function parse(lexicon, w1, . . . , wn) returns set of terms

chart ← ∅
for each wi do

for (wi, t) ∈ lexicon do
add (i, i+ 1, t) to chart

for k ∈ [2..n] do
for i ∈ [1..n+ 1− k] do // try to build edges (i, i+ k)

for j ∈ [i+ 1..i+ k − 1] do
for (i, j, t1) ∈ chart do

for (j, k, t2) ∈ chart do // check all edge pairs (i, j), (j, k)

// try combining t1, t2 using application or composition
for t ∈ combine(t1, t2) do

if (i, i+ k, t) /∈ chart then
add (i, i+ k, t) to chart

return {t: (1, n+ 1, t) ∈ chart}

Figure 8.1: The PL-CCG parsing algorithm.

8.2.1. Parser

Our PL-CCG parser is using a variant of the non-probabilistic Cocke–Younger–Kasami
(CYK) algorithm [Jurafsky09, chap. 13]. In the process of building a derivation, we
maintain a collection of edges, called a chart. An edge is a pair (i, j, t), representing
a (typed) term t derived form the words i, i + 1, . . . , j − 1. The pseudocode for the
algorithm is shown in figure 8.1.

The parser does not produce all possible derivations, however, it returns all terms
that can be derived for the whole sentence. In practice, we are concerned only with the
terms of type S from that final set.

The original CYK algorithm has a time complexity of O(n3 · |G|), where |G| is the
size of grammar. In our case, the size factor is the number of possible terms for a
sentence fragment. We can approximate it by the number of possible dependent-to-head
mappings (n2), giving us a worst case complexity of O(n5).

In practice, due to data sparseness the number of edges for a given word span remains
in single figures most of the time. However, for any kind of wide coverage PL-CCG
parsing, not to mention disambiguation between possible parses, a more efficient method
(such as a statistical parser with beam seach, used in [Hockenmaier03]) is necessary.

8.2.2. Methodology

To maximize the coverage, we employ the leave-one-out cross-validation method. We
use the whole corpus of PL-CCG derivation trees except for one as a training set, from
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which we collect a lexicon (a mapping from words to typed terms). We then attempt
to parse the remaining sentence. The procedure is repeated for every sentence in the
corpus.

The end result of parsing the sentence is a set of dependency structures (one for
each successful derivation). We combine them all into a set of retrieved dependencies
R, which we compare to the set of dependencies O taken from an original dependency
structure of the sentence1. To do that, we use the precision and recall measures:

precision =
|R ∩O|
|R|

recall =
|R ∩O|
|O|

Precision and recall are calculated both for labeled and unlabeled dependencies, i.e.
taking the dependency labels into account, and wiping them before comparision. The
resulting measures are called LP , LR, UP and UR.

8.2.3. Results

The results are shown below. The precision and recall are averaged over all success-
fully parsed sentences.

Version Coverage LP LR UP UR
nm+ns 215/8227 (2.61%) 97.08% 98.09% 98.45% 98.82%
no-mods 220/8227 (2.67%) 96.46% 97.87% 98.12% 98.48%
no-sets 539/8227 (6.55%) 86.78% 96.56% 91.36% 98.46%
normal 588/8227 (7.15%) 85.13% 96.32% 90.11% 98.36%

The very low coverage – 7% of sentences in the best case – is a result of significant
data sparseness. Because the formalism is lexicalized, and a rich set of features increases
the number of categories, often the parser does not find any category for an encountered
word, or finds an unusable one.

Unfortunately, the low coverage makes the result hard to compare the numbers to
the model for English CCG described in [Hockenmaier03], which achieves almost 100%
coverage2 (2395 out of 2401 sentences). It is however still possible to compare the
performance of different versions of the conversion algorithm.

Surprisingly, the inclusion of argument multisets does relatively little to help parsing.
The “not-sets” version of the lexicon still includes non-directional slashes (|) and that
seems to be enough to parse most of the sentences the normal version captures.

1 The procedure may seem suspect, because the original dependencies are also produced by our
conversion procedure. However, the dependency extraction method is independent from the rest of the
conversion, with the depndencies determined only by the source nodes, their types, and head element
annotations. They are always the same regardless of conversion flags.
2 The high coverage achieved by Hockenmaier can be attributed to a simple maneuver – all rare words

(≤ 5 appearances in the corpus) have been replaced with their part-of-speech tag.
This solution is impractical in our case because the resulting grammar is too big to be efficiently used

by our parser. Developing a probabilistic model for PL-CCG, and an efficient probabilistic parser, could
make this method of increasing coverage feasible.
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Using the modifiers in the lexicon has a much larger impact – the resulting categories
are more general, which decreases the precision and recall scores, but we are able to parse
over twice the number of sentences.

8.3. Discussion of the lexicon

We now examine the specific categories included in the lexicon. The Polish treebank
is more complex than the English one, and its conversion is by no means complete. This,
apart from the data sparseness, might be a reason for the low parsing coverage.

We first look at the normal version of the corpus, then briefly compare it with the
other variants.

8.3.1. The normal version

The corpus contains 83571 tokens, for which the algorithm found 8055 distinct cat-
egories, and 1207 generalized categories (distinct categories after ignoring the feature
vectors).

Table 8.1 We list the top 20 generalized categories, sorted by their occurences in
the corpus, along with example occurences from the corpus. The words of a given type
are underlined, their arguments enclosed in brackets. The explanation of the category
symbols can be found in the previous in Table 7.1 in the previous chapter.

The function of these categories in the grammar is clear, however, there are some
apparent problems:

• In compound noun phrases (etap konkursu) the head has a functional category
(etap : NO/NO), but the dependent is arguably optional (at least from the syntac-
tic point of view). In cases like this, we probably should classify the dependents
as adjuncts and assign them modifier categories.

• Prepositions have at least three different categories depending on the use of the
overall prepositional phrase (S||S/NO, PM/NO, NO|NO/NO). The problem with
prepositional phrases and other modifiers is mentioned in the section 4.6, along
with possible solutions.

A closer look at infrequent categories reveals further issues:

• Argument verbal phrases with infinitives (zaczyna z wolna zanikać) are marked
as WE, not S. However, the same modifiers apply to both, creating yet another
modifier category (z wolna : WE||WE).

• The same problem exists with some kinds of dependent clauses. In some cases
the SS (sentential phrase) category just “wraps” a S (as is the case with the że
connective shown above), but in others it SS functions as a sentence on its own –
or worse, the result category includes the accompanying comma, so that the root
verb of the dependent clause has type e.g. SS\’,’{|NO, |NO}. The problem could be
solved with a more fine-grained treatment of these cases. Alternatively, the system
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No. # occ. % occ. Category Explanation and example
1. 21071 25.21% NO noun phrases

etap konkursu
2. 8062 9.65% S\S sentence-ending punctuation
3. 7171 8.58% NO|NO noun modifiers

[służbę] wojskową
4. 5131 6.14% NO/NO nominal phrase head

etap [konkursu]
5. 3171 3.79% ’,’ comma
6. 2905 3.48% S||S sentence modifiers

Omawiana książka jeszcze raz to potwierdza.
7. 2898 3.47% PM/NO prepositions (in non-modifier phrases)

Z [domu] wyniosłam zamiłowanie do pracy.
8. 2590 3.10% S||S/NO prepositions (in sentence modifiers)

Nie znali się za [życia].
9. 1925 2.30% NO|NO/NO prepositions (in noun modifiers)

zmiany w [rządzie]
10. 1867 2.23% S|NO verbs with no complement

odbywa [służbę wojskową]
11. 1710 2.05% ’się’ reflexive pronoun

zakończył się
12. 1630 1.95% S{|NO, |NO} verbs with one complement

[Omawiana książka] jeszcze raz [to] potwierdza.
13. 1198 1.43% S/S sentence-beginning punctuation (–)

– [Co to jest?]
14. 1155 1.38% ’nie’ negation particle

Nie znali się za życia.
15. 1096 1.31% PT non-modifier adjective

Pokora uczyniła go cichym
16. 895 1.07% S\S/S connectives in coordinate clauses

[Powrócił do wiary] ,
[postanowił wrócić do Kościoła katolickiego].

17. 811 0.97% S{|NO, |PM} verbs expecting a prepositional phrase
[ja] [w jego obronie] zawsze staję

18. 645 0.77% SS\’,’/S że connective for dependent clauses
Poseł Włodzimierz Wasiński sądzi [,] że [. . . ]

19. 598 0.72% NO\NO/NO conjunctions for nominal coordinate phrases
[Szwecji] i [RPA]

20. 525 0.63% S standalone verbs
– Dziękuję.

Table 8.1: 20 generalized (no features) categories most frequently occuring in the lexicon.
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could include a hierarchy of different S categories for different types of sentential
phrases, encompassing WE and SS.

• Dependent clauses with the który relative pronoun (rywala, który grał mecz – the
rival who played a match) are represented by the source trees with który as a
pronoun subject; and our algorithm translates them as such. The requirement
that który has to be the first element of the phrase is lost in the conversion.
However, the source features identify the relative pronoun, so a more sophisticated
translation algorithm is possible – we could, for instance, make który the main,
type-raised functor of the phrase, taking the comma and the sentence as arguments:
który : (NO|NO)\’,’/(S|NO).

• The negated forms of verbs simply take the negation particle as its argument (in
[nie] znałem kościoła – I didn’t know the church – the verb znałem has category
S|NO\’nie’). This is an efficient way of dealing with the fact that the negated forms
expect a complement in a different case (non-negated znałem : S|NOacc; negated
nie znałem : S|NOgen). A more general treatment would make nie a modifier;
however, a stronger formalism would then be necessary to account for the case
change.

• Some of the low-level (verb form, noun form, etc.) nodes still consist of multiple
terminals. This doesn’t pose a problem with verb suffixes – arguably suffixes like
-em in znałem can have their own separate categories – but also results in a very
inelegant treatment of e.g. proper names (in Joliot-Curie, the word Joliot has
category NO/’curie’/’-’.
In cases like this, the algorithm should probably convert the terminal symbols
directly using the part-of-speech information (tag) included with them.

• Translation of long enumerations (heblami, wiertłami, młotkami, nożami, dłutami)
does not retain the regularity of source data. The example phrase is represented
in the source data as a “flat” subtree with the the last comma as head. The
last comma is therefore applied to all the other nouns and commas, and receives
the category (NO\NO)\NO\’,’\NO\’,’\NO\’,’\NO/NO (the type of the phrase is
NO\NO). An accurate conversion could binarize the tree first.

While the conversion seems to be adequate for the simple cases, for more complicated
constructions the algorithm often gives a clearly suboptimal answer. To improve the
conversion, the specifics of the source tree format need to be taken into account to
greater extent.

The number of special cases suggests that looking at the source data produced by the
Świgra grammar might not be the best approach. Perhaps it would be better to move
a level higher and use the grammar itself, instead of its output, as a source of linguistic
insight. The conversion would then be based not only on the end result, but also on
rules applied by Świgra while parsing the sentence.
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8.3.2. Other versions

We now try to determine the impact of two aspects of the conversion – modifiers and
argument multisets – on the shape of the lexicon lexicon. Using different versions of the
conversion algorithm resulted in the following sizes of category sets:

Version Categories Categories
(generalized)

nm+ns 13231 3821
no-mods 12662 3202
no-sets 9735 1546
normal 8055 1207

The “no-mods” flag

As could be expected from the previously shown performance evaluation, using modi-
fiers in the lexicon greatly reduces the number of used categories. The “no-mods” lexicon
has the advantage of uniform treatment for e.g. prepositional phrases (all get the cate-
gory PM) and adverbs (PS), but at the same time, the constituents need to be included
as arguments of every head element that uses them. The result is a proliferation of cat-
egories like S/’.’{|NO, |PM, |PM}, S/’.’{|NO, |PM, |PS}, etc. Because “no-mods” treats
interjections as arguments (giving them the category L), they need to be included in the
verb categories as well.

The “no-sets” flag

The “no-sets” flag turns off the order relaxation described in the previous chapter.
A noticeable result of that is the loss of generality of sentence modifiers – they no
longer all receive the S||S category, but instead have types like S|S, S|NO|NO|(S|NO|NO),
S|NO|SS|(S|NO|SS) etc.

However, the numbers suggest that the effect is not as drastic as it may seem – using
the order relaxation does not reduce the amount of categories as much, and as we have
seen in the previous section, the impact on performance is also smaller than in the case
of modifiers.

While the notion of multisets is attractive from the linguistic standpoint, perhaps
including them in the formalism is not necessary for practical applications. The afore-
mentioned problem with modifier categories could be solved with higher-order composi-
tion, allowing modifiers to act results hidden under two or more arguments. An example
of second-order composition rule is:

(B2) X/Y, Y/Z/W ` X/Z/W

Higher-order composition could allow sentence modifiers like S|S to compose with
categories such as S|NO|NO. The negative effects of introducing composition (especially
higher-order) to the derivation rules could be again mitigated by restricting it to a special
kind of categories.
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Chapter 9

Conclusion

We have developed a categorial grammar based on CCG, capable of capturing the
basic properties of Polish language. The formalism includes syntactic derivation system,
semantics based on modified lambda calculus, and a content representation language
that allows for extracting syntactic dependencies from the derivation.

The developed formalism allowed us to create a translation method for constituency
trees and apply it to the Polish treebank Składnica. Unfortunately, we haven’t been able
to evaluate the resulting lexicon in a way that makes it possible to compare the numbers
with other similar projects. However, we have shown that the proposed extensions of
CCG are useful, both by reducing the numbers of categories, and by increasing the
coverage of the parser. We have also been able to pinpoint some instances where the
conversion still needs improvement.

The work presented here can be extended in a number of ways. We briefly recapitu-
late the possibilities of follow-up we mentioned at various points in the dissertation:

• A generative, or discriminative, probabilistic model of CCG derivations would
make it possible to create an effective wide-coverage PL-CCG parser and compare
it to other state-of-the-art parsers.

• The conversion method, and the category system, could be improved to cover a
number of corner cases more adequately.

• A different treatment of modifier categories (see section 4.6) could also improve
the systems’s linguistic adequacy and performance.

• Because the performance increases attributed to argument multisets are relatively
small, possible advantages of a “no-sets” PL-CCG could be explored.

• Finally, it’s possible that a different approach to building a CCG treebank, based
on closer integration with Świgra grammar, could yield better results.
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Appendix A

List of features used by the Polish
treebank

The following is a list of all feature values in the Polish treebank and their English
translations, copied from the XML data file from [Sklad].

cat category
wypowiedzenie utterance
zdanie clause
ff finite phrase
fw required phrase
fl free phrase
flicz numeral phrase
fno nominal phrase
fpm prepositional-nominal phrase
fpmpt prepositional-adjectival phrase
fps adverbial phrase
fpt adjectival phrase
fwe verbal phrase
fzd sentential phrase
formaczas verb form
formalicz numeral form
formaprzym adjectival form
formaprzys adverbial form
formarzecz noun form
partykuła particle
przyimek preposition
spójnik conjunction/complementizer
zaimos personal pronoun
zaimprzym adjectival pronoun
zaimrzecz nominal pronoun
posiłk auxiliary
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przyzlo future auxiliary
condaglt conditional auxiliary
korelat correlate
modpart particle modifier
modjaki jaki-type modifier
znakkonca final punctuation
przec comma
nawias bracket
cudz quotation mark
pauza dash
liczba number
poj singular
mno plural
przypadek case
mian nominative
dop genitive
cel dative
bier accusative
narz instrumental
miej locative
wol vocative
pop post-prepositional
rodzaj gender
mos masculine personal
mzw masculine animal
mnż masculine inanimate
m masculine
żeń feminine
nij neuter
nmo not masculine personal
stopien degree
row positive
wyz comparative
naj superlative
aspekt aspect
nd imperfective
dk perfective
czas tense
przy future
ter present
prze past
osoba person
1 first person
2 second person
3 third person
akom accomodation
uzg agreement numeral
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nuzg non-agreement numeral
neg negation
tak affirmative
nie( ) negated
ani «ani» negated
tryb mood
ozn indicative
roz imperative
war conditional
rekcja case government
tfw type of required phrase
subj subj
adjp(mian) adjp(mian)
adjp(narz) adjp(narz)
advp advp
infp(dk) infp(dk)
infp(nd) infp(nd)
np(bier) np(bier)
np(cel) np(cel)
np(dop) np(dop)
np(mian) np(mian)
np(narz) np(narz)
prepadjp(do, dop) prepadjp(do, dop)
prepadjp(na, bier) prepadjp(na, bier)
prepadjp(za, bier) prepadjp(za, bier)
prepnp(bez, dop) prepnp(bez, dop)
prepnp(co do, dop) prepnp(co do, dop)
prepnp(dla, dop) prepnp(dla, dop)
prepnp(do, dop) prepnp(do, dop)
prepnp(na, bier) prepnp(na, bier)
prepnp(na, miej) prepnp(na, miej)
prepnp(nad, narz) prepnp(nad, narz)
prepnp(o, bier) prepnp(o, bier)
prepnp(o, miej) prepnp(o, miej)
prepnp(od, dop) prepnp(od, dop)
prepnp(po, bier) prepnp(po, bier)
prepnp(po, miej) prepnp(po, miej)
prepnp(pod, bier) prepnp(pod, bier)
prepnp(pod, narz) prepnp(pod, narz)
prepnp(przeciwko, cel) prepnp(przeciwko, cel)
prepnp(przed, narz) prepnp(przed, narz)
prepnp(przez, bier) prepnp(przez, bier)
prepnp(przy, miej) prepnp(przy, miej)
prepnp(spośród, dop) prepnp(spośród, dop)
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prepnp(u, dop) prepnp(u, dop)
prepnp(w, bier) prepnp(w, bier)
prepnp(w, miej) prepnp(w, miej)
prepnp(z, dop) prepnp(z, dop)
prepnp(z, narz) prepnp(z, narz)
prepnp(za, bier) prepnp(za, bier)
prepnp(za, narz) prepnp(za, narz)
sentp(że) sentp(że)
sentp(żeby) sentp(żeby)
sentp(do, dop, żeby) sentp(do, dop, żeby)
sentp(jakby) sentp(jakby)
sentp(o, bier, żeby) sentp(o, bier, żeby)
sentp(o, miej, że) sentp(o, miej, że)
sentp(o, miej, pz) sentp(o, miej, pz)
sentp(pz) sentp(pz)
sie sie
dest
tfz type of sentential phrase
wyroznik
os finite personal
bos impersonal
bok inifinitive
psw present participle
psu past participle
poz position
pre pre
post post
ink incorporation
ni no embedded conjunction
i(p, więc) «więc» embedded
i(p, bowiem) «bowiem» embedded
i(r, natomiast) «natomiast» embedded
i(r, zaś) «zaś» embedded
zap
bzap bzap
tk tk
ozn
typn
z z
o o
typc
z z
o o
kor
nk no correlate
do/dop do/dop
o/bier o/bier
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o/miej o/miej
typ
rc rc
rl rl
rp rp
sz sz
szk szk
po po
pc pc
pp pp
i(p, bowiem) i(p, bowiem)
i(p, więc) i(p, więc)
i(r, natomiast) i(r, natomiast)
i(r, zaś) i(r, zaś)
do/dop do/dop
o/bier o/bier
o/miej o/miej
przyim
klasa
kszt
o o
orth
base
tag
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